Лекция 9. Глубокое обучение с подкреплением для текста и речи
9.1. Введение
В этой главе мы исследуем глубокое обучение с подкреплением для текстовых и речевых приложений. Обучение с подкреплением - это ветвь машинного обучения, которая занимается изучением агентами набора действий, которые могут максимизировать ожидаемое совокупное вознаграждение. В прошлых исследованиях обучение с подкреплением было сосредоточено на игре. Последние достижения в области глубокого обучения открыли обучение с подкреплением для более широкого применения для решения реальных проблем, и появилась область глубокого обучения с подкреплением. В первой части этой главы мы познакомим вас с фундаментальными концепциями обучения с подкреплением и их расширением с помощью глубоких нейронных сетей. Во второй части главы мы исследуем несколько популярных алгоритмов глубокого обучения с подкреплением и их применение в задачах текстового и речевого NLP.
9.2. Основы RL
Обучение с подкреплением (RL) - одна из самых активных областей исследований в области искусственного интеллекта. В то время как контролируемое обучение требует от нас предоставления маркированных, независимых и идентично распределенных данных, обучение с подкреплением требует, чтобы мы указывали только желаемое вознаграждение. Кроме того, он может изучать последовательные задачи принятия решений, которые вовлекают отложенные вознаграждения, особенно те, которые происходят в далеком будущем.
Агент обучения с подкреплением взаимодействует со своей средой дискретными временными шагами. В каждый момент времени t агент в состоянии st выбирает действие at из набора доступных действий и переходит в новое состояние st + 1 и получает вознаграждение rt + 1. Цель агента - изучить наилучший набор действий, называемый политикой, чтобы генерировать наивысшую общую совокупную награду (рис. 9.1). Агент может (возможно, случайным образом) выбрать любое доступное ему действие. Любой набор действий, выполняемых агентом от начала до конца, называется эпизодом. Как мы увидим ниже, мы можем использовать марковские процессы принятия решений для захвата эпизодической динамики проблемы обучения с подкреплением.
Из-за последовательного принятия решений при обучении с подкреплением оно страдает от трудности, обычно известной как проблема присвоения кредитов. Поскольку существует множество действий, которые могут привести к отсрочке присуждения, методам обучения с подкреплением трудно приписать подмножество действий, которые имели наибольшие положительные или отрицательные влияние на эти награды. Это становится особенно сложной проблемой для больших пространств состояний и действий.
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Рис. 9.1: Взаимодействие агента и среды при обучении с подкреплением
9.2.1. Марковские процессы принятия решений
Марковский процесс принятия решений (MDP) - это полезная математическая структура, которая моделирует ситуации как дискретный процесс стохастического управления. Математически MDP можно выразить с помощью кортежа:
(s, a, pa, ra, γ)                                                                                     (9.1)
где:
s = конечный набор состояний
a = конечный набор действий
pa = вероятность каждого действия a
ra = награда за выполнение действия a
γ = коэффициент дисконтирования по времени

Процесс находится в некотором состоянии s, и на каждом временном шаге лицо, принимающее решение, может выбрать любое действие a, доступное в состоянии s. На следующем временном шаге процесс реагирует случайным переходом в новое состояние s' и дает лицу, принимающему решение, соответствующее вознаграждение Ra (s, s'). Вероятность перехода процесса в новое состояние s' из текущего состояния s зависит от выбранного действия и полученного вознаграждения r.
В частности, он определяется функцией перехода состояний p (s' | s, a):
p (s' | s, a) = Pr {St = s' | St − 1 = s, At − 1 = a} = ∑r∈Rp (s, r | s, a)           (9.2)
такой, что:
∑s ∈S∑r∈Rp (s, r | s, a) = 1,     для всех s ∈ S, a ∈ A (s)                         (9.3)
Таким образом, следующее состояние s' зависит от текущего состояния s и действия лиц, принимающих решения a'. Но учитывая s и a, оно условно не зависит от всех предыдущих состояний и действий; другими словами, переходы состояний MDP удовлетворяют свойству Маркова.
Марковские процессы принятия решений являются расширением цепей Маркова, разница в которых состоит в добавлении набора действий (позволяющих выбор) и вознаграждений (мотивирующих). И наоборот, если для каждого состояния существует только одно действие и все вознаграждения равны, процесс принятия решений Маркова сводится к цепи Маркова.
9.2.2. Функции Value, Q и Advantage
Мы определяем rt как вознаграждение, которое мы получаем в момент времени t. Мы можем определить доход как сумму последовательности будущих вознаграждений:
Gt = rt + 1 + rt + 2 + ...                                                                             (9.4)
Обычно мы включаем коэффициент дисконтирования по времени γ ∈ (0,1), и будущее совокупное вознаграждение может быть выражено как:
Gt = ∑∞k = 0 γk рt + к + 1                                                                                                                (9.5)
С помощью этого определения мы можем определить концепцию функции ценности состояния s как ожидаемого совокупного дохода:
V (s) = E [Gt | st = s]                                                                           (9.6)
Функция ценности для любого конкретного состояния не уникальна. Это зависит от того, какие действия мы предпримем в будущем. Мы определяем набор будущих действий, известный как политика π:
а = π (s)                                                                                              (9.7)
Тогда функция значения, связанная с этой политикой, уникальна:
Vπ (s) = Eπ [Gt | st = s]                                                                        (9.8)
= Eπ ∑∞k = 0γkRt + k + 1 | st = s                                                    (9.9)

Обратите внимание, что, хотя эта функция значения, связанного с политикой, уникальна, фактическое значение может быть стохастическим в рамках недетерминированной политики (например, той, где мы выбираем из распределения возможных действий, определенных политикой):
π (a | s) = P [a | s]                                                                               (9.10)

В дополнение к нахождению функции ценности определенного состояния, мы также можем определить функцию ценности для конкретного действия в данном состоянии. Это известно как функция значения действия или Q-функция:
Qπ (s, a) = Eπ [Gt | st = s, at = a]                                                        (9.11)
= Eπ [∑∞k = 0γkrt + k + 1 | st = s, at = a]                                      (9.12)
Как и функция значения, функция Q однозначно определяется для конкретной политики π действий. Ожидание учитывает случайность будущих действий в соответствии с политикой, а также случайность возвращенного состояния из среды. Обратите внимание, что:
Vπ (s) = Ea∼π [Qπ (s, a)]                                                                    (9.13)
Функция преимущества для политики π измеряет важность действия, находя разницу между функциями состояния-значения и состояния-действия-значения:
Aπ (s, a) = Qπ (s, a) −Vπ (s)                                                              (9.14)
Поскольку функция ценности V измеряет значение состояния s, следующего за политикой π, в то время как функция Q измеряет значение следующего действия a из состояния s, функция преимущества измеряет выгоду или потерю следования конкретному действию из состояния s.
9.2.3. Уравнения Беллмана
Фундаментальный прорыв в обучении с подкреплением - это набор уравнений распространения для функции ценности и Q. Эти уравнения широко известны как уравнения Беллмана в честь американского математика-прикладника Ричарда Беллмана. Для функции стоимости состояния уравнение Беллмана имеет вид:
Vπ (s) = Es’ [r + γVπ (s) | st = s]                                                         (9.15)
Это уравнение сообщает нам, что функция ценности состояния, связанная с политикой π, является ожиданием вознаграждения, полученного в следующем состоянии, и его функцией дисконтированной стоимости состояния. Точно так же уравнение Беллмана для функции Q определяется следующим образом:
Qπ (s, a) = Es’, a [r + γQπ (s, a) | st = s, at = a]                                    (9.16)
Важность уравнений Беллмана состоит в том, что они позволяют нам выражать значения состояний как значения других состояний. Это означает, что если мы знаем значение st + 1, мы можем очень легко вычислить значение st. Это открывает двери для итеративных подходов к вычислению значения для каждого состояния, поскольку, если мы знаем значение следующего состояния, мы можем вычислить значение текущего состояния. Звучит знакомо? Это похоже на понятие обратного распространения ошибки.
9.2.4. Оптимальность
Цель любой задачи обучения с подкреплением - найти оптимальные решения, которые приведут к наивысшей ожидаемой совокупной награде. Методы подкрепления подпадают под одну из нескольких основных категорий в зависимости от того, как они оптимизируют политику π для:
1. за ожидаемое вознаграждение:
maxπ E [∑∞k = 0 γkrt + k + 1]                                                                   (9.17)
2. для функции преимущества:
maxπ Aπ (s, a)                                                                                     (9.18)
3. для функции Q:
maxπ Qπ (s, a)                                                                                    (9.19)
Такие методы, как динамическое программирование или градиенты политики, стремятся оптимизировать ожидаемое вознаграждение, в то время как модели «субъект-критик» и методы Q-обучения фокусируются на оптимизации преимущества и Q-функций, соответственно.
Для любой конкретной политики действий мы можем использовать функцию значения, чтобы определить ожидаемую награду. Всегда существует по крайней мере одна политика, которая лучше или равна всем другим политикам. Это называется оптимальной политикой, обозначаемой π∗, которая может быть не единственной. Все оптимальные политики имеют одну и ту же функцию состояния:
V∗ (s) = maxπ Vπ (s)                                                                     (9.20)
Оптимальные политики также имеют одну и ту же функцию ценности действия:
Q∗ (s, a) = maxπ Qπ (s, a)                                                             (9.21)
Уравнение Беллмана может быть применено к функции оптимального значения состояния v∗, чтобы дать нам уравнение оптимальности Беллмана, которое не зависит от выбранной политики:
V∗ (s) = maxa Es [r + γV∗ (s)]                                                       (9.22)
Точно так же оптимальная функция ценности действий не зависит от выбранной политики и определяется следующим образом:
Q∗ (s, a) = Es [r + γ maxa’ Q∗ ((s’, a’) | s, a)]                                 (9.23)
9.2.5. Методы динамического программирования
Когда среда известна и полностью определена, можно применять методы динамического программирования для поиска оптимальных политик. Ключевое понятие - использовать функции значения для поиска улучшенных политик. Обычно применяемое к конечным марковским задачам процесса принятия решений, динамическое программирование лежит в основе важного класса алгоритмов обучения с подкреплением.
9.2.5.1. Оценка политики
Учитывая политику π, мы можем определить функцию ценности состояния vπ для этой политики. Используя приведенное выше уравнение Беллмана, можно начать с приближения для vπ и итеративно обновлять оценку vk, пока она не сходится к vπ при k → ∞:
Vk + 1 (s) = Eπ [rt + 1 + γVk (st + 1) | st = s]                                           (9.24)
= ∑aπ (a | s) ∑s, rp (s', r | s, a) [r + γVk (s)]                            (9.25)
Вышеуказанное является ожидаемым обновлением, поскольку оно основано на ожидании всех возможных следующих состояний и действий (рис. 9.2).
9.2.5.2. Улучшение политики
Рассмотрим следующее действие a для состояния s, которое не входит в политику π. Ценность выполнения этого действия определяется функцией значения действия:
Qπ (s, a) = E [rt + 1 + γVπ (st + 1) | st = s, at = a]                               (9.26)
= ∑s, rp (s, r | s, a) [r + γVπ (s)]                                           (9.27)
Если мы сравним ценность этого действия с нашей политикой π, мы сможем решить, следует ли нам принять новую политику, которая предполагает действие a. Это приводит к теореме улучшения политики, которая гласит, что для любых двух детерминированных политик π и π’, если:
Qπ (s, π' (s)) ≥ Vπ (s)                                                                    (9.28)
должно быть так:
Vπ’ (s) ≥ Vπ (s)                                                                              (9.29)
Когда мы обнаруживаем, что новая политика π' лучше, мы можем взять ее значение Vπ’ и использовать его, чтобы найти лучшую политику. Здесь E обозначает итерацию политики, а I обозначает улучшение политики.
Этот итерационный процесс называется итерацией политики, при этом мы циклически переключаемся между оценкой политики (π → Vπ) и улучшением политики (Vπ → π), пока не найдем оптимальную политику π∗:
π0− → E Vπ0− → I π1− → E Vπ1− → I π2− → E ... − → I π∗ − → E V∗ (10.30)
где E обозначает оценку политики, а I обозначает улучшение политики. Поскольку у конечного MDP есть конечное число возможных политик, этот процесс сходится к π∗.
9.2.5.3. Итерация значений
Потенциально серьезный недостаток итерации политики состоит в том, что оценка политики π требует больших вычислительных ресурсов, поскольку требует итерационных вычислений по каждому состоянию в MDP. Вместо того, чтобы ждать сходимости при k → ∞, мы можем аппроксимировать vπ, выполнив одну итерацию обновления (Vπ ≈ Vk + 1):
Vk + 1 (s) = maxa Eπ [rt + 1 + γVk (st + 1) | st = s, at = a]                      (9.31)
= maxa ∑s, rp (s, r | s, a) [r + γVk (s)]                                   (9.32)
Это называется итерацией значений, которая эффективна с точки зрения вычислений, поскольку сочетает усеченную оценку политики с улучшением политики.
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Рис. 9.2: Схема резервного копирования динамического программирования
9.2.5.4. Начальная загрузка
Концепция начальной загрузки, важная концепция в динамическом программировании, относится к оценке состояния или значений состояния-действия на основе оценок значений последующих состояний. Начальная загрузка является компонентом других методов RL, таких как обучение с разницей во времени или Q-обучение, и обеспечивает более быстрое онлайн-обучение. Однако, поскольку он основан на понятии использования оценок для получения оценок, может возникнуть нестабильность, и методы, которые загружают более длинные последовательности последующих состояний, будут иметь лучшие свойства сходимости.
9.2.5.5. Асинхронный DP
Методы динамического программирования оперируют всем набором состояний конечной МДП.
Если набор состояний велик, DP трудноразрешим, поскольку каждое состояние обязательно должно быть обновлено до завершения одного цикла. Методы асинхронного динамического программирования не ждут обновления всех состояний, а вместо этого обновляют подмножество состояний во время каждого цикла. Такие методы будут сходиться до тех пор, пока все состояния в конечном итоге будут обновлены. Асинхронные методы DP очень полезны тем, что они могут работать в интерактивном режиме, одновременно с тем, как агент испытывает состояния MDP. Таким образом, опыт агента можно учитывать при выборе подмножества состояний для обновления. Этот агент похож на концепцию поиска луча.
9.2.6. Монте-Карло
В отличие от методов динамического программирования, требующих полного знания среды, методы Монте-Карло (МС) учатся на опыте агентов. Эти эпизодические переживания представляют собой фактические или смоделированные последовательности действий, состояний и вознаграждений от взаимодействия агента с окружающей средой. Методы MC не требуют предварительных знаний, но все же могут дать оптимальную политику, просто используя усредненную выборку вознаграждения для каждого состояния и действия.
Рассмотрим набор эпизодов E, где каждое появление состояния s ∈ E называется посещением. Чтобы оценить vπ (s), мы можем проследить за каждым посещением до конца эпизода, чтобы вычислить возврат G, а затем усреднить их для генерации обновления:
V (st) ← V (st) + α [Gt −V (st)]                                                        (9.33)
где α - скорость обучения (рис. 9.3). Примечательно, что в методах Монте-Карло оценки для каждого состояния не зависят друг от друга. Он не использует начальную загрузку. Таким образом, методы Монте-Карло позволяют нам сосредоточиться на подмножестве соответствующих состояний для улучшения результатов.
Методы MC могут использоваться для оценки значений состояния-действия, а также значений состояния.
Вместо того, чтобы следить за посещениями состояния s, мы можем следить за действием a, предпринятым при посещении состояния s, и соответственно усреднять. К сожалению, однако, может случиться так, что определенные пары состояние-действие никогда не будут посещены. Для детерминированных политик из любого состояния выполняется только одно действие, и поэтому будет оцениваться только одна пара состояние-действие. Для улучшения политики необходимо оценивать состояние всех действий каждого шага.
Один из методов преодоления проблемы достаточного исследования в Монте-Карло - использовать начало исследования, метод, который генерирует эпизоды, начиная с произвольно выбранных действий и состояний. Это называется методом на основе политики, поскольку мы стремимся улучшить политику, используемую для создания эпизодов.
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Рис. 9.3: Схема резервного копирования Монте-Карло
9.2.6.1. Выборка по важности
Методы вне политики основаны на двух отдельных политиках: целевая политика, которая будет оптимизирована, и другая исследовательская политика, которая используется для создания поведения (называемая политикой поведения). Внеполитические методы Монте-Карло обычно используют понятие выборки по важности, которая представляет собой метод оценки ожиданий одного распределения с учетом выборок из другого. Ключевой идеей является более частая выборка значений, которые имеют большее влияние на ожидание, путем смещения вероятностной массы.
Обратите внимание на то, что целевая политика и политика поведения могут быть не связаны друг с другом, с детерминированными или стохастическими.
9.2.7. Обучение временной разнице
Обучение временной разнице (TD) стремится объединить лучшее из мира динамического программирования и методов Монте-Карло. Подобно динамическому программированию, он использует начальную загрузку для обновления оценок, не дожидаясь конца эпизода. Одновременно он может учиться на собственном опыте без явной модели окружающей среды, такой как методы Монте-Карло. Простейшее обучение метода TD - одношаговый TD, также известный как TD(0). Он основан на обновлении функции значения состояния на (рис. 9.4):
V (st) ← V (st) + α [rt + 1 + γV (st + 1) −V (st)]                                  (9.34)
Это можно записать так:
V (st) ← V (st) + αδt                                                                         (9.35)
где:
δt = rt + 1 + γV (st + 1) −V (st)                                                              (9.36)
известна как ошибка TD. В то время как другие методы, такие как Монте-Карло, должны ждать до конца эпизода (время T), чтобы обновить V (st), этот метод использует только оценки следующего временного шага для формирования обновления. То есть одношаговый TD оценивает доходность Gt → rt + 1 + γV (st + 1). Это пример начальной загрузки. Как и в случае с Монте-Карло, TD использует выборку доходности, чтобы приблизительно определить ожидаемую доходность. Как и в динамическом программировании, TD использует V (st + 1) вместо Vπ (st + 1). В отличие от методов DP, методы TD не требуют модели окружающей среды. Кроме того, методы TD обновляются намного быстрее в режиме онлайн, тогда как методы Монте-Карло должны ждать до конца полного эпизода для расчета доходов, используемых в обновлении. Для очень длинных серий Монте-Карло может быть слишком медленным.
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Рис. 9.4: Диаграмма резервного копирования по временной разнице
Одношаговый TD имеет некоторое сходство со стохастическим градиентным спуском в том, что он использует одноэтапное обновление выборки, а не ожидание по всему распределению последующих состояний. Кроме того, можно доказать, что оба они сходятся - одношаговое TD может асимптотически приближаться к Vπ. Для более быстрой сходимости TD может использовать пакетное обновление, при котором функция значения обновляется после вычисления и агрегирования для пакета опытов.
Методы TD не ограничиваются отдельными временными шагами, а n-шаговый TD позволяет выполнять загрузку на нескольких шагах с помощью правила обновления:
Vt + n (st) = Vt + n (st) + α [Gt: t + n −Vt + n − 1 (st)]                                  (9.37)
где 0 ≤ t <T и n-шаговый возврат определяется как:
Gt: t + n = rt + 1 + γrt + 2 + ... + γn − 1rt + n + γn Vt + n − 1 (st + n) оценка будущей доходности (9.38)
Эта n-ступенчатая доходность является приближением к полной доходности, где последний член является оценкой оставшейся доходности после n-шагов. В то время как одношаговый TD может обновляться после вычисления последующего состояния, n-этапный TD должен ждать, пока не пройдут n шагов эпизода перед обновлением. В качестве компромисса n-шаговый TD обеспечивает лучшие оценки функций значения состояния с лучшими свойствами сходимости, чем одношаговый TD.
Алгоритм 1: алгоритма одношагового обучения TD
вход: политика π
выход: функция значения V
инициализировать V случайным образом с V (терминал) = 0
для каждого эпизода инициализировать состояние s
для каждого шага эпизода, пока терминал не сделает
предпринять действия, заданные π (a | s)
соблюдать награду r, следующее состояние s
обновить V (s) ← V (s) + α [r + γV (s) −V (s)]
обновить s ← s

9.2.7.1. SARSA
Методы «действие-значение» выгодны в формулировках, свободных от модели, поскольку они могут работать с текущими состояниями без доступа к модели окружающей среды. Это контрастирует с функциями значения состояния, которые требуют модели, поскольку они требуют знания будущих состояний и возможных действий для оценки. Мы можем применить метод временной разницы для оценки функции действие-значение, рассматривая переходы от одной пары состояние-действие к следующей паре состояние-действие:
Q (st, at) ← Q (st, at) + α [rt + 1 + γQ (st + 1, at + 1) − Q (st, at]             (9.39)
Обратите внимание, что это обновление может применяться только к переходам из нетерминальных состояний, поскольку Q (st + 1, at + 1) = 0 в конечных состояниях. Поскольку это обновление зависит от кортежа (st, at, rt+1, st + 1, at + 1), оно называется SARSA. Это полностью интерактивный метод, основанный на политике, который асимптотически сходится к оптимальной политике и функции ценности действия.
Алгоритм 2: алгоритм обучения SARSA
ввод: политика π
вывод: функция Q
инициализировать Q (s, a) случайным образом с Q (terminal, all) = 0
для каждой серии делать
инициализировать состояние s
выберите действие a из π (a | s), производное от Q;
для каждого шага эпизода, пока терминал не сделает
выполнить действие a, получить вознаграждение r, следующее состояние s
обновить Q (s, a) ← Q (s, a) + α [r + γQ (s, а) −Q (s, a)]
обновить s ← s, а ← а

9.2.8. Градиент политики
Методы градиента политики стремятся оптимизировать политику напрямую, без необходимости изучать функцию значения состояния или действия. В частности, эти безмодельные методы используют параметрическое представление для стохастической политики π (a | s; θ) с параметрами θ и стремятся оптимизировать ожидаемую доходность:
π (a | s; θ) ← - maxθ Eπ [Gt]                                                              (9.40)
путем применения градиентного подъема для обновления параметров политики:
θ ← θ + α∇θEπ [Gt]                                                                           (9.41)
Обратите внимание, что эта формула оценивает математическое ожидание до вычисления градиента, что требует от нас знания переходного распределения вероятностей π (a | s; θ). Для аналитической управляемости мы можем использовать теорему о политическом градиенте, задаваемую следующим образом:
∇θEπ [Gt] = ∇θ∫x∼πpθ (x) Gt (τ) dx                                                         (9.42)
= ∫x∼πpθ (x) ∇θ log pθ (x) Gt (x) dx                                           (9.43)
= Eπ [∇θ logπ (at | st; θ) Gt]                                                      (9.44)
что позволяет нам выразить правило обновления градиента политики как:
θ ← θ + αEπ [∇θ logπ (at | st; θ) Gt]                                                   (9.45)
Таким образом, мы можем обновить нашу политику, не вычисляя распределение вероятностей перехода действий и состояний или не требуя модели.
Методы градиента политики полезны как для непрерывных, так и для дискретных пространств действий. Популярный метод, известный как REINFORCE, применяет стохастический градиентный спуск, так что только одна последовательность используется для обучения на каждом шаге для оценки параметров θ. Таким образом, это беспристрастная оценка с уменьшенной вычислительной нагрузкой. Но поскольку для оценки вознаграждения используется одна последовательность, REINFORCE может страдать от высокой дисперсии и дольше сходиться. Способ уменьшить эту дисперсию - вычесть базовое вознаграждение rb (st) из нашего ожидаемого дохода, что учит модель увеличивать вероятность действий, которые генерируют ожидаемую доходность выше среднего:
θ ← θ + αEπ [∇θ logπ (at | st; θ) (Gt −rb (st)]                                (9.46)
Выбрав пакет последовательностей действий, среднее вознаграждение по этому пакету можно использовать в качестве базового вознаграждения во время обновлений градиента для каждой последовательности действий в этом пакете. Пока базовое вознаграждение не зависит от параметров политики θ, оценка остается беспристрастной.
Алгоритм 3: алгоритм REINFORCE
ввод: политика π (a | s; θ)
выход: оптимальная политика π ∗
инициализировать параметры политики θ
пока не сходится делать
создать серию, следуя политике π
для каждого шага в эпизоде, пока терминал не сделает
рассчитать доход G
обновить θ ← θ + αγtG∇logπ (at | st; θ)

9.2.9. Q-Learning
Q-обучение основано на представлении о том, что при наличии оптимальной Q-функции оптимальная политика может быть непосредственно найдена с помощью соотношения:
π∗ (s) = argmaxa Q∗ (s, a)                                                                (9.47)
Таким образом, эти методы пытаются узнать оптимальную Q-функцию напрямую, всегда выбирая наилучшее действие из любого состояния, без необходимости учитывать политику, которой следует придерживаться. Q-Learning - это метод TD вне политики, который обновляет функцию значения состояния действия с помощью:
Q (st, at) ← Q (st, at) + α[rt + 1 + γ maxa’ Q (st + 1, a’) ожидаемая будущая награда – 
Q (st, at)]                                                                               (9.48)
Это уравнение очень похоже на SARSA, за исключением того, что оно оценивает ожидаемую в будущем награду, максимизируя будущие действия. Фактически, Q-обучение использует жадное обновление для перехода к оптимальной Q-функции, и было показано, что оно сходится в пределе к Q∗.
Алгоритм 4: алгоритм Q-обучения
вывод: функция Q
инициализировать Q (s, a) случайным образом с Q (terminal, all) = 0
для каждой серии делать
инициализировать состояние s
для каждого шага эпизода, пока терминал не сделает
выбрать лучшее действие a из Q (ε-жадное);
выполнить действие a, получить вознаграждение r, следующее состояние s
обновить Q (s, a) ← Q (s, a) + α [r + γ maxa Q (s
, а) −Q (s, a)]
обновить s ← s

9.2.10. Актер-критик
Методы критики действующих лиц, как и методы градиента политики, основаны на оценке параметрической политики. Что отличает методы «актер-критик», так это то, что они также изучают параметрическую функцию, которая используется для оценки последовательностей действий и помощи в обучении. Действующее лицо - это оптимизируемая политика, а критик - это функция ценности, и ее можно рассматривать как параметрическую оценку базового вознаграждения в приведенном выше уравнении обновления градиента политики:
θ ← θ + αEπ[∇θ logπ (at | st; θ) [Qπ (st, at)actor − Vπ (st)critic ]]         (9.49)
Обратите внимание, что мы можем заменить актера-критика функцией преимущества:
θ ← θ + αEπ [∇θ logπ (at | st; θ)Aπ (st, at)]                                       (9.50)
где Aπ (st, at) = Qπ (st, at) −Vπ (st). Подобно алгоритму REINFORCE, акторкритические методы могут использовать стохастический градиентный спуск для выборки одной последовательности. В этом случае функция Advantage принимает форму:
Aπ (st, at) = rt + γVπ (st + 1)Оценка для Q (s, a) −Vπ (st)                             (9.51)
Во время обучения субъект предоставляет выборочные состояния st и st + 1, чтобы критик мог оценить функцию ценности. Затем субъект использует эту оценку для вычисления функции преимущества, используемой для обновления параметров политики θ.
Поскольку методы «актер-критик» основываются на текущих выборках для обучения критика (как модели политики), они страдают от того факта, что оценки актера и критика коррелируют. Этого можно избежать, перейдя к обучению вне политики, при котором образцы накапливаются и сохраняются в буфере памяти. Затем этот буфер произвольно выбирается для обучения критика. Это называется воспроизведением опыта, это эффективный метод сэмплирования, поскольку отдельные сэмплы можно использовать несколько раз во время обучения. В целом, пакетное обучение с моделями «Актер-критик» может дать оценки с низкой дисперсией, но они будут искажены из-за плохой оценки критиков. Это контрастирует с моделями градиента политики, которые могут иметь высокую систематическую ошибку, но являются беспристрастными.
Алгоритм 5: алгоритм актер-критик
вход: политика π (a | s; θ), функция состояния-значения v (s; w)
выход: оптимальная политика π ∗
инициализировать параметры политики θ и веса значений состояния w
пока не сходится делать
инициализировать состояние s
для каждого шага в эпизоде, пока терминал не сделает
выполнить действие a из π (a | s; θ), наблюдать награду r, следующее состояние s
обновить w ← w + βA (s, a) ∇v (s; w)
A (s, a) ← r + γv (s; w) −v (s; w)
обновить θ ← θ + αγt
A (s, a) ∇logπ (at | st; θ)
обновить s ← s

9.2.10.1. Преимущество критика актера A2C
Способ уменьшить вариативность при онлайн-обучении - использовать несколько потоков, которые действуют параллельно вместе, как пакет для обучения модели. Каждый поток использует одну выборку и вычисляет обновление, используя функцию преимущества. Когда все потоки завершат расчет своего обновления, они объединяются для обновления модели. Это известно как модель «субъект-критик с синхронным преимуществом» или A2C. Как алгоритм A2C очень эффективен и не требует буфера памяти. Кроме того, он может очень эффективно использовать современные многоядерные процессоры для ускорения вычислений.
Алгоритм 6: алгоритм A2C
вход: политика π (a | s; θ), функция состояния-значения v (s; w)
выход: оптимальная политика π∗
инициализировать параметры политики θ и веса значений состояния w
пока не сходится делать
инициализировать состояние s
для каждого шага в эпизоде, пока терминал не сделает
пример N действий ai из π (a | s; θ), соблюдайте награду ri, следующее состояние sit
обновить wi ← wi + βA (si, ai) ∇v (si; wi)
А (с, а) ← 1/N ∑iri + γv (s’i; wi) −v (si; wi)
обновить θ ← θ + αγtA (s, a) ∇logπ (at | st; θ)
обновить s ← s

9.2.10.2. Критик актера асинхронного преимущества A3C
Вместо того, чтобы ждать, пока все потоки закончат вычисление обновления, мы можем обновить модель асинхронно. Как только поток вычисляет обновление, он может транслировать обновление другим потокам, которые немедленно применяют его в своих вычислениях. Это известно как асинхронное преимущество актера-критика или A3C и привлекло огромное внимание и беспрецедентный успех из-за своего небольшого объема вычислений и короткого времени обучения.
9.3. Алгоритмы обучения с глубоким подкреплением
Методы глубокого обучения имеют несколько важных применений в обучении с подкреплением. Их способность автоматически изучать большие распределенные представления и служить в качестве универсальных аппроксиматоров функций делает их полезными для параметрического моделирования политики, функции ценности и функции преимущества. В частности, недавние достижения в методах глубокого обучения для моделей от последовательности к последовательности привели к созданию интересных приложений глубокого обучения с подкреплением для NLP.
Глубокие нейронные сети, как известно, нестабильны, когда используются для аппроксимации нелинейных функций, таких как функция значения состояния. Существует множество методов стабилизации обучения, включая пакетное обучение, воспроизведение опыта и целевые сети.
9.3.1. Почему RL для Seq2seq
Модели последовательность-последовательность (seq2seq), как обсуждалось в предыдущей главе, широко используются для решения последовательных задач. Наиболее распространенный метод обучения моделей seq2seq называется принудительным обучением, при котором достоверные последовательности используются для минимизации потерь максимального правдоподобия (ML) на каждом этапе декодирования. Однако во время тестирования для оценки модели часто используются дискретные метрики, такие как Word Error Rate (WER). Эти дискретные метрики недифференцируемы и не могут использоваться в рамках машинного обучения для обучения. Легко оптимизировать потери машинного обучения во время обучения только для получения неоптимальных показателей во время тестирования - проблема, известная как несогласованность поездов и тестов.
Модели Seq2seq страдают от другой существенной проблемы, известной как смещение экспозиции. В то время как принудительная установка учителя использует метку наземной истины на каждом шаге для декодирования следующего элемента в последовательности, эта метка наземной истины недоступна во время тестирования.
В результате модели seq2seq могут использовать свои прогнозы только для декодирования последовательности. Это означает, что ошибки будут накапливаться во время генерации выходной последовательности. В результате плохие модели могут никогда не улучшиться во время обучения. Один из способов справиться с систематической ошибкой воздействия - использовать запланированную выборку во время обучения модели, когда модель сначала предварительно обучается с использованием максимального правдоподобия, а затем медленно переключается на собственные прогнозы во время обучения [Ken + 18].
Обучение с подкреплением предлагает способ преодолеть эти два ограничения. За счет включения дискретной метрики, такой как WER, в качестве функции вознаграждения, методы обучения с подкреплением могут избежать несоответствия обучающего теста. Поскольку состояние модели RL задается на каждом временном шаге выходным состоянием декодера seq2seq, смещение экспозиции можно избежать.
Недавно было показано, что модели, основанные на внимании, значительно превосходят стандартные модели seq2seq по множеству задач. Однако они страдают важными ограничениями из-за больших пространств вывода. В NLP принято использовать сокращенные словари меньшего размера, чтобы уменьшить вычислительную нагрузку. Модели на основе внимания не могут обрабатывать слова вне словарного запаса. Чтобы преодолеть это, недавно были предложены методы генерации указателей [SLM17]. Эти методы реализуют механизм переключения, так что, когда слово OOV предсказывается выходными данными модели, входное слово копируется на выход. Модели генерации указателей в настоящее время являются самыми современными для нескольких задач NLP.
9.3.2. Глубокий градиент политики
Методы глубокого градиента политики обучают глубокую нейронную сеть изучать оптимальную политику. Это может быть выполнено с помощью модели seq2seq, в которой выходное состояние декодера используется для представления состояния модели. Таким образом, агент моделируется как глубокая нейронная сеть (модель seq2seq), где выходной уровень предсказывает дискретное действие, предпринимаемое этим агентом (рис. 9.5). Методы градиента политики, такие как REINFORCE, можно применять путем выбора действий в соответствии с глубокой нейронной сетью во время обучения для генерации последовательностей. Вознаграждение наблюдается в конце последовательности или при предсказании символа конца последовательности (EOS). Это вознаграждение может быть метрикой производительности, оцениваемой на основе разницы между сгенерированной последовательностью и последовательностью достоверности.
К сожалению, алгоритм должен ждать до конца последовательности для обновления, что вызывает высокую дисперсию и замедляет сходимость. Кроме того, в начале обучения, когда глубокая нейронная сеть инициализируется случайным образом, заранее предсказанные действия могут сбить модель с пути. Недавняя работа предполагает предварительное обучение модели градиента политики с использованием кросс-энтропийных потерь перед переключением на алгоритм REINFORCE, который является концепцией, известной как теплый старт.
Алгоритм 7: алгоритм seq2seq REINFORCE
вход: входные последовательности X, исходные выходные последовательности Y
вывод: Оптимальная политика π ∗
пока не сходится делать
выберите партию из X и Y
прогнозировать последовательность действий: [a1, a2, ..., aN]
соблюдать награды [r1, r2, ..., rN]
рассчитать базовое вознаграждение в рублях
вычислить градиент и обновить политику сети
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Рис. 9.5: Архитектура DPG
9.3.3. Глубокое Q-обучение
Вместо того, чтобы изучать оценку политики напрямую, мы можем использовать глубокие нейронные сети для аппроксимации функции ценности действия, из которой мы можем определить оптимальную политику. Эти методы широко известны как глубокое Q-обучение, при котором мы учимся оценивать Q-функцию Q (s, a; θ) с параметрами θ путем минимизации функции потерь:
L (θ) = 1/2E [r + γ maxa’ Q (s’, a’; θ) −Q (s, a; θ)]2                                (9.52)
Взяв градиент относительно θ, получим правило обновления вида:
θ ← θ + α [r + 
γ maxa’ Q (s’, a’; θ) − Q (s, a; θ)]временная разность ∇θQ (s, a; θ)     (9.53)
К сожалению, у правила обновления есть проблемы с конвергенцией, и оно может быть довольно нестабильным, что ограничивает использование моделей глубокого Q-обучения сами по себе.
9.3.3.1. DQN
Алгоритм глубокой Q-сети (DQN) - это модель глубокого Q-обучения, которая использует воспроизведение опыта и целевые сети для преодоления нестабильности (рис. 9.6) [Mni + 13].
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Рис. 9.6: Архитектура DQN
Некоторые связывают открытие области глубокого обучения с подкреплением с внедрением алгоритма DQN в 2015 году [HGS15]. Воспроизведение опыта, как указывалось ранее, использует буфер памяти для хранения переходов, которые минипакетами выбираются во время обучения. Этот буфер опыта помогает разрушить корреляцию между переходами и тем самым стабилизировать обучение.
Целевая сеть - это дополнительная копия глубокой Q-сети. Его веса θtarget периодически копируются из исходной Q-сети, но в остальное время остаются неизменными. Эта целевая сеть используется для вычисления временной разницы во время обновления:
θ ← θ + α [r + 
        γ maxa’ Q (s’, a’; θtarget)целевая сеть − Q (s, a; θ)] ∇θQ (s, a; θ)           (9.54)

Вместе опыт воспроизведения и целевая сеть эффективно сглаживают обучение и избегают колебаний или расхождений параметров. Обычно для воспроизведения опыта используется конечный буфер памяти длиной M, так что только самые последние M переходов сохраняются и выбираются. Более того, опыт равномерно отбирается из буфера, независимо от значимости. Совсем недавно повторение приоритетного опыта был предложен [Sch + 15a], где более значимые переходы выбираются чаще на основе ошибки TD и выборки важности.
Алгоритм 8: алгоритм Seq2Seq DQN
вход: входные последовательности X, исходные выходные последовательности Y
выход: Оптимальная функция Q Q ∗
Инициализировать модель seq2seq πθ
Инициализировать параметры Q сети θ
Инициализировать параметры целевой Q сети θtarget
Инициализировать память воспроизведения
пока не сходится делать
выберите партию из X и Y
примерные последовательности действий из модели seq2seq: [a1, a2, ..., an]
собрать опыт (st, at, rt, st) и добавить в память воспроизведения
выбрать мини-пакет из памяти воспроизведения
для каждой мини-партии образца сделать
оценить текущее значение Q с помощью сети Q
оценить значение Q следующего наилучшего действия, используя целевую сеть Q
сохранить оценки в буфер
обновить параметры Q-сети θ, минимизируя потери Q-сети с помощью мини-пакета
оценки
обновить модель seq2seq πθ с градиентом на основе оценочных значений Q
каждые K шагов копируйте веса в целевую сеть θtarget = θ

9.3.3.2. Двойной DQN
Методы DQN страдают от проблемы, заключающейся в том, что они в основном склонны переоценивать Q-значения. Чтобы убедиться в этом, предположим, что выполняется следующее соотношение:
Maxa’ Q (s’, a’; θtarget) = 	
            Q (s, argmaxa’ Q (s’, a’; θtarget); θtarget)                               (9.55)

Используя это, мы можем переписать функцию потерь DQN как:
L (θ) = ½ E [r + γQ (s, argmaxa’ Q (s’, a’; θtarget); θtarget) – 
Q (s, a; θ)]2                                                                        (9.56)
В этом выражении видно, что целевая сеть используется дважды; сначала выбирается следующее наилучшее действие, а затем оценивается значение Q этого действия. В результате наблюдается тенденция к завышению значений Q. Сети двойного глубокого обучения Q-Learning преодолевают это за счет использования двух отдельных целевых сетей: одна для выбора следующего наилучшего действия, а другая для оценки значений Q с учетом выбранного действия.
Вместо того, чтобы вводить другую целевую сеть, Double Deep Q-Networks (DDQN) использует текущую Q-сеть для выбора следующего наилучшего действия и целевую сеть для оценки ее Q-значения. Функция потерь DDQN может быть записана как:
L (θ) = ½ E[r + γQ (s’, argmaxa’ Q (s’, a’; θ); θtarget) –
Q (s, a; θ)2                                                                           (9.57)

DDQN устраняет необходимость в третьей сети, используемой в Double Deep Q-Learning для решения проблемы завышения оценки.
9.3.3.3. Дуэльные сети
Методы DQN и DDQN полезны, когда пространство действий невелико. В приложениях NLP, однако, пространство действий может быть равно размеру словаря, даже при том, что только небольшое подмножество может быть осуществимо одновременно. Оценка Q-ценности каждого действия в таком большом пространстве может быть чрезмерно дорогостоящим и медленным. Примите во внимание тот факт, что в некоторых состояниях выбор действия может иметь незначительный эффект или не иметь никакого эффекта, в то время как в других состояниях выбор действия может быть вопросом жизни или смерти.
Метод дуэльной сети использует одну сеть для одновременного прогнозирования как функции значения состояния, так и функции преимущества, которые объединяются для оценки Q-функции. Таким образом избегается необходимость оценивать ценность каждого варианта действия. В одном из возможных проектов дуэльная сеть основана на архитектуре Q-сети с нижними уровнями CNN, за которыми следуют два отдельных полностью связанных потока уровней, выходные данные которых суммируются для оценки Q-значения.
Алгоритм 9: алгоритм двойного DQN Seq2Seq
вход: входные последовательности X, исходные выходные последовательности Y
выход: Оптимальная функция Q = Q ∗
Инициализировать модель seq2seq πθ
Инициализировать параметры Q сети θ
Инициализировать параметры целевой Q сети θtarget
Инициализировать память воспроизведения
пока не сходится делать
выберите партию из X и Y
примерные последовательности действий из модели seq2seq: [a1, a2, ..., an]
собрать опыт (st, at, rt, st) и добавить в память воспроизведения
выбрать мини-пакет из памяти воспроизведения
для каждой мини-партии образца сделать
оценить текущее значение Q с помощью сети Q
выбрать следующее лучшее действие с помощью Q-сети
оценить образец Q, используя целевую сеть Q
сохранить оценки в буфер
обновить параметры Q сети θ, минимизируя потери Q сети с помощью мини-пакетных оценок
обновить модель seq2seq πθ с градиентом на основе оценочных значений Q
каждые K шагов копируйте веса в целевую сеть θtarget = θ

9.3.4. Актер-критик Deep Advantage
Мы увидели, что добавление отдельной целевой сети к методам глубокого Q-обучения может помочь преодолеть высокую дисперсию и переоценку. Напомним, что в DDQN мы используем текущую сеть для выбора действия и целевую сеть для оценки действия. Фактически, текущая сеть служит актором, а целевая сеть - критиком, с оговоркой, что две сети идентичны по архитектуре и веса целевой сети периодически синхронизируются с текущей сетью.
Это не обязательно, поскольку другую сеть можно обучить оценивать функцию ценности и действовать как критик. Поскольку глубокие нейронные сети, как правило, являются нестабильными оценками функции ценности состояния, методы глубокого критика и субъекта обычно сосредоточены на оценке и максимизации функции преимущества.
Вместо функции преимущества, определенной как разница между функцией значения состояния и Q-функцией, мы можем использовать ошибку TD:
δ = rt + γVπθ (st + 1) −Vπθ (st)                                                          (9.58)
поскольку можно доказать, что:
E [δ] = Qπθ (s, a) −Vπθ (st)                                                            (9.59)
Этот метод сети ценностей известен как субъект-критик с глубоким преимуществом (рис. 9.7). В этом случае необходима только одна сеть Q, хотя по соображениям стабильности ее лучше всего обучить с помощью воспроизведения опыта и целевой сети, подобной DQN.
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Рис. 9.7: Архитектура Deep Advantage Actor-Critic
Алгоритм 10: алгоритм Seq2Seq AC с воспроизведением опыта
вход: входные последовательности X, исходные выходные последовательности Y
вывод: Оптимальная политика π ∗
Инициализировать сеть акторов (seq2seq), πθ
Инициализировать сеть критиков θ
Инициализировать память воспроизведения
пока не сходится делать
выберите партию из X и Y
примерные последовательности действий от Актера: [a1, a2, ..., an]
Рассчитайте истинное вознаграждение со скидкой: [r1, r2, ..., rn]
собрать опыт (an, vn) и добавить в память воспроизведения
образец мини-партии из памяти воспроизведения
для каждой мини-партии образца сделать
вычислить оценки преимуществ из сети критиков
обновлять критические параметры сети Q θ за счет минимизации потерь критиков по сравнению с мини-пакетом
обновить параметры актера πθ с градиентом на основе оценок преимуществ от критика

9.4. DRL для текста
Методы обучения с глубоким подкреплением недавно были применены к множеству задач обработки текста на естественном языке. В частности, они очень преуспели в создании диалоговых агентов и диалоговых систем. В следующих разделах мы предлагаем обзор различных методов DRL для извлечения информации, классификации текста, диалоговых систем, суммирования текста, машинного перевода и генерации естественного языка. Многие из них основаны на использовании моделей seq2seq, используемых либо для создания вложений, либо в качестве моделей целевой политики. Это не означает, что методы DRL ограничены использованием моделей seq2seq, поскольку CNN также могут быть успешно применены.
9.4.1. Извлечение информации
Извлечение информации определяется как задача автоматического извлечения сущностей, отношений и событий из текста. В последние годы исследователи успешно применили методы глубокого обучения для извлечения сущностей, в том числе архитектуры, использующие CNN и RNN [Qi + 14, GHS16]. Однако в реальных доменах требуется очень большой объем помеченных данных, чтобы научиться выполнять высококачественное извлечение. Кроме того, качество извлечения отношения зависит от результатов извлечения сущности (и наоборот). Также может быть, что мы заботимся только о подмножестве отношений, например, в извлечении задачи действия. При рассмотрении этих соображений нашли свое применение методы DRL.
Для крупномасштабных областей маркированные обучающие данные часто являются самым большим ограничением производительности, поскольку получение точно маркированных данных может быть чрезмерно дорогостоящим.
Дистанционное наблюдение - это один из методов, который пытается облегчить эту потребность за счет использования внешнего графа знаний для автоматического выравнивания текста для извлечения сущностей или отношений [Мин + 09b]. Однако полученная таким образом экстракция напрямую не маркируется и может быть неполной. Вот где может оказаться полезным обучение с подкреплением.
9.4.1.1. Извлечение сущности
Для задач извлечения сущностей внешняя информация может использоваться для устранения неоднозначностей и повышения точности путем запроса похожих документов, и сравнения извлеченных сущностей.
Это последовательная задача, которую можно решить с помощью агента обучения с подкреплением, где мы моделируем задачу извлечения как марковский процесс принятия решений.
На рисунке 9.8 показан пример архитектуры, предложенной К. Нарасимханом и др. [NYB16] на основе агента DQN. В этой модели состояния - это векторы с действительным знаком, которые кодируют совпадения, контекст и достоверность извлеченных сущностей из целевых документов и документов запроса. Действия состоят в том, чтобы принять, отклонить или согласовать сущности двух документов и запросить следующий документ. Функция вознаграждения выбрана для максимальной конечной точности извлечения:
R (s, a) = ∑entity jAcc (entitytarget (j)) - Acc (entityquery (j))                (9.60)
Чтобы минимизировать количество запросов, к каждому шагу добавляется отрицательное вознаграждение. Поскольку эта модель основана на непрерывном пространстве состояний, алгоритм DQN можно обучить приближать Q-функцию, где параметры DQN изучаются с использованием стохастического градиентного спуска с воспроизведением опыта и целевой сети для уменьшения дисперсии.
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Рис. 9.8: Извлечение сущностей с помощью DQN
9.4.1.2. Извлечение отношений
Рассмотрим сеть глубокого обучения для задачи извлечения отношений. Эта сеть рассматривается как агент DRL, роль которого состоит в том, чтобы принимать на входе последовательность слов в предложении, а на выходе - извлеченные отношения. Если предложения рассматриваются как состояния, а отношения - как действия, мы можем изучить оптимальную политику для извлечения отношений. Процесс извлечения отношений из пакета предложений становится эпизодом.
На рисунке 9.9 изображен подход с глубоким градиентом политики к этой задаче извлечения отношений. Функция вознаграждения определяется точностью предсказанных отношений в сумке по сравнению с набором золотых этикеток. Алгоритм REINFORCE был применен [Zen + 18] для оптимизации политики этой модели путем определения функции вознаграждения состояния si следующим образом:
R (si) = γn – i rn                                                                            (9.61)
где n - количество предложений в сумке, а rn равно +1 или -1. Целевая функция для метода градиента политики:
J (θ) = Es1, s2, ..., snR (si)                                                               (9.62)
Это приводит к градиентному обновлению формы:
θ ← θ + ∇J (θ) = ∑ni = 1∑nij = 1∇p (ai | si; θ) (R (si) −rb)              (9.63)
где базовая линия rb определяется как:
rb = ∑ni = 1 ∑nij = 1 R (sj) / ∑ni = 1 ni                                             (9.64)
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Рис. 9.9: Извлечение связи с DPG
9.4.1.3. Извлечение действий
Задача извлечения последовательностей действий из текста является сложной задачей, поскольку обычно они сильно зависят от контекста. Традиционные методы зависят от набора шаблонов, которые плохо переносятся на естественный язык. Методы маркировки последовательностей неэффективны, поскольку есть только подмножество последовательностей, которые можно считать значимыми действиями. Средство извлечения действий может быть смоделировано как агент DRL, где состояния рассматриваются как последовательности слов, а действия - как набор меток, связанных с последовательностью слов. Этот агент может изучить оптимальную политику маркировки путем обучения модели DQN. На рисунке 10.10 показана архитектура, предложенная Feng et al. [FZK18] и называемая EASDRL, которая основана на извлечении сначала имен действий, а затем целей действия. Для этого эта архитектура определяет две Q-функции, связанные с отдельными сетями CNN для моделирования имени действия Q (s, a) и цели действия Q (sˆ, a), и обучается с использованием варианта воспроизведения опыта, который имеет положительный вес вознаграждения переходов выше.
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Рис. 9.10: Извлечение действий с помощью DQN
9.4.1.4. Извлечение совместной сущности / отношения
Обычно извлечение сущности предшествует извлечению отношения. Их можно рассматривать как взаимозависимые задачи, поскольку качество извлечения отношений обычно зависит от качества извлеченных сущностей. Учитывая этот последовательный характер, можно использовать обучение с подкреплением для совместного обучения и оптимизации для обеих задач одновременно. На рисунке 9.11 показана архитектура DRL [Fen + 17], основанная на агенте глубокого Q-обучения. В этой модели текущее состояние s является выходом экстрактора сущностей из Bi-LSTM с вниманием Att (X; θ1), а переходное состояние s является выходом извлечения отношения из дерева Tree-LSTM (X; θ2). Действия определяются по набору (a1, a2, a3, a4), где a1 и a2 классифицируют наличие упоминания отношения, а a3 и a4 классифицируют тип упоминания отношения. Другими словами, агент DRL сочетает в себе задачи извлечения сущностей, классификации упоминаний отношений и классификации отношений. Модель DQL обучается с использованием стохастического градиентного спуска.
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Рис. 9.11: Извлечение объединенной сущности / отношения с помощью DQL
9.4.2. Классификация текста
Глубокое обучение для классификации текста в основном сосредоточено на изучении представлений слов и предложений, которые могут эффективно фиксировать семантический контекст и структуру.
Однако современные методы не могут автоматически изучать и оптимизировать структуру, так как они обучаются явно с использованием контролируемого ввода или аннотаций древовидных структур. Напротив, DRL можно использовать для построения представлений предложений с иерархической структурой без необходимости в аннотациях.
На рисунке 9.12 показана архитектура, состоящая из трех компонентов: сети политик, модели представления и сети классификации [ZHZ18]. Сеть политик основана на стохастической политике, состояния которой являются векторными представлениями как уровня слов, так и структуры уровня фразы. Эти векторы являются выходными данными модели представления, которая состоит из двухуровневой иерархической LSTM, которая соединяет последовательность слов, чтобы сформировать фразу, и последовательность фраз, чтобы сформировать представление предложения. Действия сети политики определяют, находится ли слово внутри фразы или в конце. Принимая во внимание, что политическая сеть фокусируется на построении предложения представлений, которые фиксируют структуру, сеть классификации берет выходные данные из модели представления и использует их для выполнения задачи классификации.
Для совместного обучения сетей политик и классификации иерархический LSTM сначала инициализируется и предварительно обучается с использованием кросс-энтропийных потерь сети классификаторов, задаваемых следующим образом:
L = - ∑X∈D∑Ky = 1p (y, X) logP (y | X)                                        (9.65)
где p и P - целевое и прогнозируемое распределения соответственно. Параметры для модели представления и сетей классификаторов затем поддерживаются постоянными, а сеть политик предварительно обучается с использованием алгоритма REINFORCE. После горячего старта все три сети обучаются совместно до схождения.
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Рис. 9.12: Классификация текста с помощью DPG
9.4.3. Диалоговые системы
Системы диалога становятся все более популярными по мере того, как чат-боты находят широкое применение в социальных сетях и в службе поддержки клиентов. Разработка интеллектуальной диалоговой системы всегда была основной целью ИИ, начиная с теста Тьюринга. Агенты диалога должны выполнять ряд задач, включая понимание естественного языка, отслеживание состояния, политику диалога и генерацию естественного языка. Диалоговые системы были успешно смоделированы как частично наблюдаемые марковские процессы принятия решений.
Диалоги с заполнением слотов - важный подкласс диалоговых систем, которые включают заполнение набора предопределенных слотов в ответ на диалог пользователя и контекст. В этих системах отношения между чат-ботом и пользователем аналогичны отношениям агента RL и его среды. Разговорный диалог становится оптимальной задачей принятия решений, где функцию вознаграждения можно определить как успешное взаимодействие между чат-ботом и пользователем.
Диалоговые системы имеют несколько фундаментальных проблем. Самая большая проблема - это проблема присвоения кредита, когда распространение ошибки по конвейеру может сделать практически невозможным определение компонентного источника ошибки. Например, неэффективная политика диалога может быть из-за неправильного отслеживания состояния или низкого качества NLU. Точно так же зависимость компонентов, находящихся ниже по потоку, от задач выше по потоку, делает оптимизацию особенно сложной. Например, настройка трекера состояния может привести к неоптимальной политике диалога. В идеальном случае весь конвейер обучается одновременно сквозным образом. По этим причинам методы глубокого RL находят существенное применение для моделирования диалоговых систем.
Агент DQN был успешно применен для обучения диалоговой системы [ZE16, GGL18], которая объединяет отслеживание состояния и политику диалога и обрабатывает их как действия, доступные агенту RL. Архитектура изучает оптимальную политику, которая генерирует словесный ответ или обновляет текущее состояние диалога. На рисунке 10.13 изображена модель DQN, которая использует сеть LSTM для генерации представления состояния диалога.
Выходные данные LSTM служат входными данными для набора сетей политик в виде многослойных сетей персептронов, представляющих каждое возможное действие. Выходные данные этих сетей представляют функции значения состояния действия для каждого действия.
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Рис. 9.13: Диалоговая система с DQN
Из-за многомерного пространства состояний и действий для обучения диалоговых систем обычно требуется большое количество помеченных диалогов. Чтобы преодолеть эту потребность в обучающих данных, был предложен двухэтапный метод глубокого обучения RL [Fat + 16], который использует архитектуру "субъект-критик", где сеть политик сначала обучается с учителем с использованием небольшого количества высококачественных диалогов через категориальные кросс-энтропия для начального обучения. Затем сеть создания ценности может быть обучена с использованием метода критики актера с глубоким преимуществом.
9.4.4. Обобщение текста
Резюмирование текста - это интересная задача НЛП, которая направлена ​​на автоматическое генерирование резюме входящего текста на естественном языке в удобочитаемой форме. Он широко используется в различных отраслях и подразделяется на две категории: экстрактивное и абстрактное обобщение. В случае извлечения он стремится удалить лишний текст и сохранить только самые релевантные слова, сохраняя форму естественного языка.
В абстрактном случае он стремится предоставить перефразированное резюме соответствующих моментов текста.
Ориентированный на отзыв дублер для оценки листинга (ROUGE) - это стандартный показатель качества, наиболее часто используемый для задач реферирования текста. По определению, ROUGE-1 измеряет униграммы, которые являются общими между предсказанным обобщением и исходным справочным текстом. ROUGE-2 измеряет общие биграммы, а ROUGE-L измеряет самую длинную общую подстроку (LCS) между предсказанием и достоверностью. Для каждого из этих показателей обычно указываются точность и отзывчивость. Проблема с ROUGE заключается в том, что они предоставляют мало информации о удобочитаемости предсказаний, которые обычно фиксируются с помощью такой меры, как недоумение языковой модели.
DQN был успешно применен к задаче извлекающего резюмирования текста [LL17, PXS17b, C¸ e + 18b]. На рисунке 10.14 показана архитектура, в которой состояния обозначают текущую (частичную) текстовую сводку, действия обозначают добавление предложения к этой сводке, а ROUGE используется в качестве награды. В этой архитектуре предложение представлено как конкатенация вектора документа (DocVec), вектора предложения (SentVec) и вектора позиции (PosVec).
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Рис. 9.14: Обобщение текста с помощью DQN
Сети глубокого обучения, основанные на внимании, нашли значительную популярность в задачах обобщения абстрактного текста. Но, несмотря на высокие показатели ROUGE, они часто генерируют неестественные итоги. Это открыло двери для глубоких методов RL, которые могут включать смешанную тренировочную цель:
Lmixed = σLrl + (1 − σ) Lml                                                              (9.66)
который включает в себя как функцию максимального правдоподобия по принуждению учителя:
Lml = − ∑nt = 1log p (yt | y1, y2, ..., yt − 1, x)                                      (9.67)
и цель градиента политики:
Lrl = - [r −rb] ∑nt = 1logP (yt | y1, y2, ..., yt − 1, x)                              (9.68)
где награда r - дискретная цель, такая как ROUGE.
9.4.5. Машинный перевод
Одним из последних достижений в области нейронного машинного перевода стало использование моделей seq2seq. Как отмечалось выше, принуждение учителей является основным методом обучения этих сетей. Эти модели демонстрируют смещение экспозиции во время прогнозирования. Более того, декодеры не могут генерировать представляющие интерес целевые последовательности с конкретными целями. Это особенно верно, если используется поиск луча, который имеет тенденцию фокусировать больше о краткосрочных вознаграждениях - концепция, названная миопической предвзятостью. Машинный перевод чаще всего оценивается на основе дискретной меры BLEU, которая создает несоответствие обучающих наборов и тестов.
Для преодоления некоторых из этих недостатков были предложены модели глубокого обучения RL. Модель глубокого обучения PG [Li + 16], основанная на алгоритме обучения REINFORCE, может учитывать недифференцируемую природу метрики BLEU. Однако REINFORCE страдает от неспособности изучать политики в больших пространствах действий, как в случае языкового перевода.
Совсем недавно была предложена модель «субъект-критик» с использованием схемы декодирования, которая включает долгосрочные вознаграждения через оценку функции ценности [Bah + 16a]. В этой модели модель прогнозирования главной последовательности является действующим лицом / агентом, а функция ценности выступает в качестве критика. Текущий вывод предсказания последовательности - это состояние, а токены-кандидаты - это действия агента. Критик реализуется отдельной RNN и обучается на основе достоверных результатов с использованием методов временной разницы, а целевой критик используется для уменьшения дисперсии.
9.5. DRL для речи
Глубокие нейронные сети в наши дни значительно улучшили производительность систем распознавания речи. Когда они используются как часть гибридной системы вместе с GMM или HMM, выравнивание акустической модели является необходимостью во время обучения. Этого можно избежать, когда глубокие нейронные сети используются в сквозных системах, которые изучают транскрипцию, напрямую максимизируя вероятность входных данных [YL18]. Такие системы, хотя в настоящее время являются лучшими по своим характеристикам, все же страдают множеством ограничений.
Опираясь на опыт работы с текстом, исследователи и практики начали применять методы обучения с глубоким подкреплением для речи и звука, включая такие задачи, как автоматическое распознавание речи, улучшение речи и подавление шума.
В ближайшем будущем мы ожидаем увидеть более широкое внедрение методов глубокого RL в других аспектах речи, включая приложения для ведения дневника говорящего, определения тона говорящего и анализа стресса.
9.5.1. Автоматическое распознавание речи
Задача автоматического распознавания речи (ASR) во многом похожа на машинный перевод. ASR чаще всего использует обучение методом максимального правдоподобия CTC при измерении производительности с помощью дискретной меры, такой как коэффициент ошибок по словам (WER). В результате несоответствие обучающего набора и тестов становится проблемой. Кроме того, как задача прогнозирования последовательности, ASR страдает от систематической ошибки экспонирования, поскольку она будет обучаться на основе достоверных меток, которые недоступны во время прогнозирования.
Подход с глубоким RL с использованием градиентов политик показал свою эффективность в [ZXS17], преодолевая эти ограничения (рис. 9.15). В этом подходе модель ASR рассматривается как агент, а обучающие образцы - как среда. Политика πθ (y | x) параметризуется θ, действия считаются сгенерированными транскрипциями, а состояние модели - это скрытое представление данных. Функцией вознаграждения принято считать WER. Градиент политики обновляется правилом:
θ ← θ + α∇θ logPθ (y | x) [r −rb]                                                      (9.69)
9.5.2. Улучшение речи и подавление шума
Методы машинного обучения для улучшения речи существуют уже довольно давно. Методы улучшения обычно подразделяются на четыре подзадачи: обнаружение голосовой активности, оценка отношения сигнал-шум, подавление шума и усиление сигнала. В первые две подзадачи предоставляются статистика по целевому речевому сигналу, а последние две - используют эту статистику для извлечения целевого сигнала. Естественно, это можно рассматривать как последовательную задачу. Метод глубокого обучения RL, основанный на градиентах политики, был предложен [TSN17] для задачи улучшения речи с архитектурой, основанной на использовании сети LSTM для моделирования фильтра, параметры θ которого определяются изученной политикой πθ. В этой модели фильтр - это агент, состояние - это набор параметров фильтра, а действия - это увеличение или уменьшение параметра фильтра. Функция вознаграждения измеряет среднеквадратичную ошибку между выходным сигналом фильтра и последовательностью достоверных сигналов. Эта модель градиента политики, обученная с использованием алгоритма REINFORCE, может улучшить отношение сигнал / шум без каких-либо алгоритмических изменений в базовом процессе улучшения речи. Кроме того, за счет включения агента глубокого обучения с подкреплением фильтр может адаптироваться к изменяющимся основным условиям посредством динамической адаптации параметров.
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Рис. 9.15: Автоматическое распознавание речи с помощью DPG
9.6. Пример использования
В этом тематическом исследовании мы применим концепции глубокого обучения с подкреплением из этой главы к задаче резюмирования текста. Мы будем использовать набор данных Cornell NewsRoom Summarization. Цель здесь - показать читателям, как мы можем использовать алгоритмы глубокого обучения с подкреплением для обучения агента, который может научиться составлять резюме этих статей. В данном тематическом исследовании мы сосредоточимся на глубоком градиенте политики и агентах Q-сети с двойной глубиной.
9.6.1. Программные инструменты и библиотеки
В этом примере мы будем использовать следующие пакеты:
· TensorFlow - это программная библиотека с открытым исходным кодом для программирования потоков данных для решения ряда задач. Это символьная математическая библиотека, которая также используется для приложений машинного обучения, таких как нейронные сети. Он используется как для исследований, так и для производства в Google.
· RLSeq2Seq - это библиотека с открытым исходным кодом, которая реализует различные методы RL для суммирования текста с использованием моделей от последовательности к последовательности.
· pyrouge - это интерфейс Python для пакета ROUGE-1.5.5 на основе Perl, который вычисляет ROUGE-оценки текстовых сводок.

9.6.2. Обобщение текста
Для измерения эффективности сводок, сгенерированных машиной, мы будем использовать ROUGE, что расшифровывается как Recall-Oriented Understudy for Gisting Evaluation. Это набор показателей, используемых для оценки автоматического резюмирования текстов, а также машинного перевода. Он работает путем сравнения автоматически созданного резюме или перевода с набором справочных обзоров (обычно созданных человеком).
ROUGE-N, ROUGE-S и ROUGE-L являются показателями детализации текстов при сравнении сводок, предсказанных системой, и справочных сводок.
Например, ROUGE-1 относится к перекрытию униграмм между сводной информацией о системе и справочной сводкой. ROUGE-2 относится к наложению биграмм между системным и справочным сводками. Возьмем пример сверху. Допустим, мы хотим вычислить оценки точности и отзыва ROUGE-2. Для ROUGE отзыв – это мера того, какая часть справочной сводки отражена в сводке системы.
9.6.3. Исследовательский анализ данных
Набор данных Cornell Newsroom состоит из 1,3 миллиона статей и резюме, написанных авторами и редакторами новостей из 38 основных публикаций в период с 1998 по 2017 год.
Набор данных разделен на наборы для обучения, разработки и тестирования по 1,1, 100 и 100 тысяч выборок.
Ниже представлен образец набора данных:
Сюжет: совпадающий с неделей рождения Мэри Шелли, семейное дело Скоттов, созданное Ридли для сына директора Люка, является еще одним отходом от старой истории об ученых, которые создают новую жизнь только для того, чтобы увидеть, как она кровоточит прочь от них. Расследование ледяного оценщика рисков Кейт Мара по поводу неправильного обращения с одноименным гибридным интеллектом (стиль ведьмы Аня Тейлор-Джой) позволяет Скотту-младшему часом испытать экзистенциальное беспокойство: это спокойная Морган или ее невоздержанные надзиратели (Тоби Джонс, Мишель Йео, Пол Джаматти), кто представляет большую угрозу для безопасной работы этой теневой корпорации? Увы, как только этот вопрос решен, фильм превращается в достаточно грубую отговорку, связанную с предполагаемым поворотом в последнюю минуту, который имеет очевидный прецедент в каноне Скотта. Способный актерский состав тянет нас через ухищрения, приветствуя ряд научно-фантастических идей, но возбужденный Франкенштейн не является одним из самых умных или оригинальных в фильме.
Резюме: Ридли и сын Люк превращаются в сносный научно-фантастический триллер, но ужас превращается в шок, поскольку фильм движется к предсказуемому поворотному финалу.
В нашем тематическом исследовании мы будем использовать подмножества из 10 000/1000/1000 статей и резюме из набора данных Cornell Newsroom для наших обучающих, проверочных и тестовых наборов соответственно. Мы будем токенизировать и отображать эти наборы данных, используя 100-мерные вложения, созданные с помощью word2vec. Из соображений памяти мы ограничиваем наш словарный запас до 50 000 слов.
9.6.3.1. Модель Seq2Seq
Наша первая задача - обучить агента глубокого градиента политики, который может создавать резюме статей. Прежде чем мы это сделаем, мы предварительно обучаем модель seq2seq, используя максимальную вероятность потерь, размер слоя кодера и декодера 256, размер пакета 20 и adagrad с отсечением градиента для 10 эпох (рис. 9.16). 
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Рис. 9.16: Модель Seq2Seq для резюмирования текста
После предварительного обучения мы оцениваем эту модель на тестовом наборе, чтобы получить результаты, показанные в таблице 9.1.
Таблица 9.1: Показатели ROUGE для Seq2Seq, обученного на MLE
F-оценка точности отзыва
РУЖ-1 15,6 20,6 14,5
РУЖ-2 1,3 1,6 1,3
РУЖ-Л 14,3 19,0 13,3
Seq2seq: в 90 лет эта черепаха никогда не двигалась лучше, несмотря на ужасное нападение крысы, которое привело к появлению ног. Ссылка: 90-летней черепахе дали колеса после того, как нападение крысы привело к потере передних ног.
Seq2seq: городской служащий в бакубе, столице провинции дияла, ярко описал свою двойственность. 
Ссылка: иракцы не хотят ничего, кроме как чтобы солдаты США покинули Ирак, но они не могут себе позволить ничего меньше 

Seq2seq: в четверг Google сообщил о более слабых, чем ожидалось, результатах за последний квартал. 
Справка: акции технологического гиганта выросли после того, как он сообщил о меньшем, чем ожидалось, росте продаж за последний квартал 

По сравнению со справочными сводками полученные сводки достоверны, но оставляют место для улучшения.

9.6.3.2. Градиент политики
Давайте применим алгоритм глубокого градиента политики, чтобы улучшить наши сводки (рис. 9.17).
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Рис. 9.17: Глубокий градиент политики для резюмирования текста
Мы устанавливаем нашу функцию вознаграждения на счет ROUGE-L F1 и переключаемся с потери MLE на потерю RL. Мы продолжаем обучение в течение 8 эпох, после чего оцениваем модель, обученную RL, на тестовом наборе, чтобы найти результаты, показанные в таблице 9.2.
Таблица 9.2: Показатели ROUGE для DPG F-score Precision Recall
РУЖ-1 22,4 19,6 35,3
РУЖ-2 6,0 5,8 8,5
РУЖ-Л 17,6 15,5 28,0

По мере повышения уровня подготовки мы ожидаем увидеть, что сгенерированные резюме станут еще более согласованными с языком, созданным человеком.
DPG: По словам источников, Apple раскрыла детали плана предоставления потоковой музыки звукозаписывающим компаниям. Справка: руководители Apple поговорили о планах с четырьмя ведущими звукозаписывающими компаниями, чтобы они предложили потребителям бесплатный потоковый музыкальный сервис. Несколько источников в музыкальной индустрии сообщили cnet 
DPG: консервативный эксперт Гленн Бек говорит, что администрация Обамы использует церкви и другие религиозные группы для продвижения своей программы по изменению климата.
Справка: Гленн Бек говорит, что Обама использует церкви для борьбы с изменением климата. Теплица DPG: зоопарк в столице Грузии вновь открылся через три месяца после разрушительного наводнения, в результате которого погибло более половины из 600 животных, в том числе около 20 тигров, львов и ягуаров. 
Справка: a georgia зоопарк, половина животных которого погибла во время наводнения в июне, вновь открылся Рис. 9.17: Глубокий градиент политики для текстового резюмирования
9.6.3.3. DDQN
Давайте посмотрим, сможем ли мы улучшить результаты выше, используя агент двойного глубокого Q-обучения. Мы начинаем, как и раньше, с предварительного обучения языковой модели seq2seq, используя потерю максимального правдоподобия для 10 эпох. Затем мы обучаем сеть с двойной глубиной Q для 8 эпох, используя размер пакета 20, буфер воспроизведения из 5000 выборок и обновляя целевую сеть каждые 500 итераций. Для лучших результатов мы сначала обучим DDQN-агент с фиксированным актером на одну эпоху. Когда мы затем оцениваем полученную модель на тестовом наборе, мы находим результаты, показанные в Таблице 9.3.
Таблица 9.3: Показатели ROUGE для DDQN
F-оценка точности отзыва
РУЖ-1 34,6 28,8 55,5
РУЖ-2 21,4 19,0 31,1
ROUGE-L 30,4 25,7 47,7

DDQN: командующий американскими войсками на Ближнем Востоке сказал, что отказ подчиняться приказам произошел во время битвы за недавно освобожденный город Манбидж, Сирия. смерть в недавнем сражении вместо отступления на север 
DDQN: онлайн-обсуждение рынка аренды в районе Вашингтона с участием обозревателя почты Сары Гебхардт 
Ссылка: добро пожаловать в жизнь квартиры онлайн-обсуждение рынка аренды в районе Вашингтона с участием обозревателя статьи Сара Гебхардт 
DDQN: albania стала крупнейшим производителем каннабиса, выращенного на открытом воздухе, в Европе. 
Справка: Албания стала крупнейшим производителем каннабиса, выращенного на открытом воздухе, в Европе.
Агент DDQN превосходит агент DPG по выбранным параметрам. Существует множество возможностей для дальнейшего улучшения результатов - мы могли бы использовать запланированную или приоритетную выборку, промежуточные вознаграждения и / или некоторую форму внимания к кодеру или декодеру.
9.6.4. Упражнения для читателей и практиков

1. Как бы вы сочетали агент DQN для задачи классификации текста при использовании модели seq2seq с мягким вниманием?
2. Имеет ли смысл использовать две отдельные целевые сети для двойного агента DQN? Почему или почему нет?
3. Какие глубокие нейронные сети мы бы использовали для модели Q-обучения?
Почему CNN были бы уместны или нет?

Перспективы на будущее
Предсказать будущее ИИ сегодня невозможно больше, чем в прошлые годы.
Более того, чем дальше мы прогнозируем будущее, тем больше неопределенность. В общем, некоторые вещи могут идти в точности так, как ожидалось (повышение скорости вычислений), некоторые ожидания могут иметь небольшую вариативность (доминирующая роль архитектуры глубокого обучения), а другие представляют собой самостоятельные инновации, которые вряд ли можно будет предсказать (сочетание больших данных, скорости вычислений и появления глубокого обучения одновременно). В заключение этой книги мы хотели бы представить наши прогнозы, основанные на текущих траекториях, тенденциях и полезности исследований, которые мы обсуждали. Мы отвергаем все претензии на то, чтобы считаться прорицателями или даже надежными сторонами в этих прогнозах. Мы пытаемся только представить читателю соображения по завершении этих тем и предложить области осведомленности в ближайшие годы.
Распространенность сквозной архитектуры
Учитывая успех многих сквозных подходов как в НЛП, так и в речи, мы ожидаем, что в сторону этих архитектур будет двигаться больше людей. Одна из областей, где этим подходам не хватает устойчивости, - это настройка на определенные среды, например, полезность модели лексики в гибридной архитектуре ASR или адаптация языковых моделей к новым доменам. Это область, которая должна быть предназначена для глубокого обучения, чтобы оказать существенное влияние в областях, где данные для обучения являются дорогостоящими или недоступными.
Переход к AI-Centric
Один из самых простых прогнозов состоит в том, что все больше компаний перейдут на стратегию, ориентированную на ИИ, или сосредоточатся на ней. Многие ведущие технологические компании, например, Google, Facebook и Twitter, двигались в этом направлении, и эта тенденция, вероятно, сохранится во многих других крупных и средних компаниях. Этот сдвиг представит машинное обучение на всех уровнях разработки программного обеспечения, а вместе с ним и потребность в инструментах и ​​процессах, обеспечивающих надежность и универсальность. Некоторые придумали термин «Программное обеспечение 2.01» в свете этого сдвига. Переход в это состояние потребует увеличения строгости в отношении данных, интерпретируемости моделей, повышенного внимания к безопасности модели и устойчивости к противоборствующим сценариям.
Специализированное оборудование
Специализированное оборудование станет более распространенным. Эта модель развития довольно распространена при использовании оборудования ASIC (специализированная интегральная схема) для майнинга криптовалюты или процессоров изображений, встроенных в смартфоны.
Внедрение TPU было одним из первых случаев, когда специальное физическое оборудование было создано специально для глубокого обучения. Выпуск чипа Apple A11 - еще один пример специализированного оборудования для поддержки нейронных сетей на мобильных устройствах.
Переход от контролируемого обучения
Мы ожидаем, что машинное обучение сместится. Наибольшие улучшения в глубоком обучении произошли с контролируемыми данными; однако затраты, связанные с созданием больших помеченных наборов данных, часто непомерно дороги. Во многих сценариях существуют большие немаркированные источники, которые могут использоваться неконтролируемыми алгоритмами, и мы ожидаем большей концентрации алгоритмов в этой области, как видно из развития встраивания слов и языковых моделей.
Объяснимый ИИ
Хотя методы сквозного глубокого обучения являются мощными и могут привести к впечатляющим показателям производительности, таким как точность, они страдают от интерпретируемости. Многие приложения в финансовом мире (например, заявки на получение кредита или наблюдение) или в сфере здравоохранения (например, прогнозирование заболеваний) нуждаются в моделях и прогнозах, которые можно было бы объяснить. В отрасли произошел сдвиг в сторону объяснимого ИИ (XAI). Многие методы, такие как Local Interpretable Model-Agnostic Explanation (LIME), Deep Learning Important Features (DeepLIFT), Аддитивное объяснение Шапли (SHAP) и многие другие, были очень многообещающими в предоставлении независимого от модели объяснения для индивидуальных прогнозов, а также для обобщения моделей. Подобные и другие инновации потребуются для преодоления препятствий, связанных с интерпретируемостью моделей и доверием к ИИ.
Процесс разработки и развертывания модели
В глубоком обучении существует компромисс между простотой экспериментов во время разработки модели и развертыванием этих моделей в высокопроизводительном производстве с низкой задержкой и высокооптимизированным кодом. Этот компромисс более распространен в моделях NLP и распознавания речи, поскольку они представляют собой сложные динамические графики по сравнению с предпочтительными статическими графиками для оптимизации производительности во время выполнения. Такие фреймворки, как PyText, которые помогают настраивать предварительно созданные модели, быстро проводить эксперименты, предоставлять готовые рабочие процессы для проектировщиков и инженеров моделей и поддерживать простое развертывание моделей в производственных средах с минимальным вмешательством, скоро станут необходимыми. часть процесса разработки. Модель тестирования и обеспечение качества - это еще один аспект процесса разработки и развертывания, который необходимо скорректировать с учетом сложных моделей глубокого обучения. В недавней исследовательской статье Google «Оценка тестирования машинного обучения: критерий готовности к производству машинного обучения и сокращения технического долга» предлагается отличная основа для тестирования этих сложных систем, основанных на глубоком обучении.
Демократизация ИИ
ИИ и глубокое обучение используются все еще очень небольшой, но быстро растущей группой исследователей, преподавателей, экспертов и практиков. Чтобы сделать их доступными для широких масс с помощью приложений, инструментов или обучения, необходимо изменить отношение, политику, инвестиции и исследования, особенно со стороны ведущих компаний и университетов. Это явление называется «демократизацией ИИ». Многие компании такие как Google, Microsoft и Facebook, а также многие университеты, такие как Массачусетский технологический институт, Стэнфорд и Оксфорд, вносят свой вклад в программные инструменты, библиотеки, наборы данных, курсы и т. д., которые свободно доступны в Интернете. Положительная динамика в этом направлении сыграет огромную роль в преобразовании жизней.
AI NLP Trends
Языковые модели можно предварительно обучить на большом корпусе немаркированных данных, что дает им значительное преимущество. Сейчас считается, что языковые модели добавляют огромные преимущества для многих задач НЛП. Внедрения языковых моделей предоставляют функции для сложных задач и, как было показано, позволяют улучшить многие задачи с помощью современных методов. Использование состязательных методов для понимания моделей, анализа случаев сбоя или повышения надежности моделей становится тенденцией в исследованиях глубокого обучения. Переход к языкам с ограниченными ресурсами и использование методов глубокого обучения, таких как трансферное обучение, - еще одна область, на которую обращают внимание многие исследователи, особенно, в таких задачах, как машинный перевод. Одна из самых любопытных областей развития - это обучение с подкреплением. Вместо сбора данных, обучения модели, запуска ее в производство и тестирования результата можно создать агент, который будет взаимодействовать со средой (реальной или синтетической) и учиться на основе своего опыта. В целом, мы видим прогресс от контролируемых к неконтролируемым методам подкрепления.
Речевые тенденции
Многие из методов сквозного глубокого обучения могут превзойти традиционные гибридные модели на основе HMM с меньшим количеством настроек и лингвистических знаний. Эти модели очень хорошо работают в сценариях, где данные обучения широко доступны, как правило, в общих задачах распознавания речи. Однако они имеют тенденцию бороться, когда контекст имеет решающее значение для предсказания. Кроме того, постоянное стремление к слиянию речи и НЛП - это направление, которое, вероятно, будет продолжаться, при этом непрерывное обучение будет лидировать. Последние достижения сосредоточены на включении информации о предметной области в процедуру декодирования посредством объединения языковых моделей для контекстуализированного распознавания.
Другие области, где распознавание речи все еще затруднено, связаны с акустической средой и специфическими различиями говорящих, такими как акценты. Использование сгенерированных данных из систем преобразования речи в текст набирает обороты, обеспечивая имитацию среды и громкоговорителей для повышения надежности. Мы ожидаем, что внедрение систем преобразования речи в текст, аналогичных рабочим процессам GAN, будет продолжать улучшаться и потенциально будет более полно интегрировано в рабочие процессы подкрепления.
Заключительные замечания
Мы надеемся, что читатели сочли информацию в этой книге информативной и полезной. За последние несколько лет глубокое обучение сильно повлияло на НЛП и речь, и эта тенденция, похоже, набирает обороты. Мы надеемся, что позволили читателям понять, как фундаментальные, так и продвинутые методы глубокого обучения, а также показали, как их применять на практике.
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Dynamic Programming

V(s) < E, [1 +7v(s.0)]
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